The In Vitro Biological Assessment of a Tobacco Heating Product and Comparison With a Cigarette Smoke

Mark Taylor, Damien Breheny, Jason Adamson, Stela Bozhilova, Tomasz Jaunky, Simone Santopietro, Anya Terry, David Thorne, Marianna Gaca
British American Tobacco (Investments) Ltd, Southampton, SO15 8TL, UK
Correspondence: damien.breheny@bat.com

Introduction

Tobacco heating products (THPs) represent a subset of the next-generation nicotine and tobacco product category, in which tobacco is heated at temperatures of less than 350°C instead of burning (900°C), having the potential to significantly reduce cigarette smoke toxicants. THPs hold great potential for reducing the harm associated with tobacco use, but this needs to be scientifically proven.

The aim of this study was to characterise the aerosol emissions and assess the biological impact of the novel THP: THP1.0 (commercially known as glo™) (Figure 1), comparing results to a reference 3RF4 cigarette.

Materials and Methods

Assessment of emissions

The emissions of toxicants in THP1.0 aerosol were compared with those from a reference 3RF4 cigarette under a machine-puffing regimen of 55 mL puff volume, 2 s puff duration and 30 s puff interval. The list of toxicants measured included those proposed by Health Canada, the WHO Study Group on Tobacco Product Regulation (ToobReg), the US Food and Drug Administration and possible thermal breakdown products. Overall, 22 different analytical techniques were used to quantify the emissions of 126 analytes in 3RF4 mainstream smoke and THP1.0 emissions, as described in Forster et al., 2018e.

In vitro assessment

Using the same puffing regimen as described above, three different test matrices were generated for in vitro assessment:

- **Total Particulate Matter (TPM)** – trapped on a Cambridge filter pad and eluted at 24 mg/mL in DMSO. TPM is diluted in cell culture medium to treat cells in submersed culture.
- **Whole aerosol (WA)** – cells directly exposed to aerosol at the air-liquid interface.
- **Aerosol aqueous extract (AqE)** – aerosol bubbled through cell culture medium in an impinger. AqE is diluted in cell culture medium to treat cells in submersed culture.

Neutral red uptake (NRU) cytotoxicity assay

TPM cytotoxicity was assessed using BALB/c 3T3 mouse fibroblasts. WA cytotoxicity was assessed using human bronchial epithelial cells (H292) exposed at the air-liquid interface for 1 h at dilutions of 1:20-1:1,000 for 3RF4 and 1:2-1:200 for THP1.0 (aerosol:air; v:v). Two endpoints were determined: AqE and THP1.0.

Luciferase-based reporter gene assay to assess oxidative stress

Antioxidant response element (ARE) transcriptional activation in stably transfected H292 cells were assessed after 6 and 24 h treatment.

Endothelial wound healing (scratch) assay

Artificial wounds were created in monolayers of human umbilical vein endothelial cells (HUVEC). Cells were treated with AqE, and wound repair was assessed over 22 hours using image analysis, as previously reported.

Multiparametric analysis using high-content screening (HCS) approaches

The Cellomics Arrayscan VI platform was used to assess 10 endpoints in normal human bronchial epithelial cells (NHBEs) after 4 or 24 h exposures, as previously described.

Results

Quantitative of FDA priority toxicants

Toxicol levels in the emissions from THP1.0 were significantly lower than those from 3RF4 (Table 1). 3RF4 inhibited wound repair in a HUVEC monolayer, in a dose-dependent manner. AqE from THP1.0 did not significantly affect wound repair, up to the maximum concentration tested (100% AqE; Figure 4).

Table 1. 3RF4 reference cigarette MSS yields and THP1.0 emission yields for 18 priority constituents in the US FDA abbreviated list presented on a consumable basis. Values calculated using replicate data per analyte (N=5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>THP1.0</th>
<th>Mean per Consumable</th>
<th>%Redn Per Consumable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-Butadiene</td>
<td>µg</td>
<td>108</td>
<td>108</td>
<td>99.9</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>µg</td>
<td>2.20</td>
<td>111</td>
<td>95.0</td>
</tr>
<tr>
<td>Acrolein</td>
<td>µg</td>
<td>157</td>
<td>2.22</td>
<td>98.6</td>
</tr>
<tr>
<td>Benzene</td>
<td>µg</td>
<td>78.6</td>
<td>0.0154</td>
<td>>99.9</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>µg</td>
<td>12.9</td>
<td>0.0154</td>
<td>97.7</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>ng</td>
<td>32.0</td>
<td>0.233</td>
<td>99.8</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>µg</td>
<td>54.10</td>
<td>3.29</td>
<td>93.9</td>
</tr>
<tr>
<td>4-(N,N-Dimethylamino)-1-(1-pyrrolidinyl)-1-butane (NNN)</td>
<td>ng</td>
<td>281</td>
<td>6.61</td>
<td>97.7</td>
</tr>
<tr>
<td>Nitrosomethylamine (NNK)</td>
<td>ng</td>
<td>263</td>
<td>24.7</td>
<td>90.6</td>
</tr>
</tbody>
</table>

In vitro assessment

WA cytotoxicity assessment demonstrated that 3RF4 produced a concentration-related decrease in cell viability, resulting in complete cytotoxicity at the top concentrations tested. THP1.0 induced significantly less cytotoxicity at comparable and higher levels of nicotine delivered to the cells.

Conclusions

- The tobacco heating product (THP1.0) showed little or no activity in any of the in vitro assays where it was assessed.
- Activity was significantly less than from 3RF4 reference cigarette across all studies.

These studies indicate that this novel product has the potential to confer reduced risk of disease compared to cigarette smoking.

References

www.bat-science.com

@BAT_Sci

Figure 1. Schematic drawing and picture of THP1.0 with a tobacco consumable.

Figure 2. Neutral red uptake determined cell cytotoxicity of H292 cells after 1 hour exposure to a range of dilutions of the two test articles generated on the Borwald RM205 smoking machine. Cell cytotoxicity is expressed as a function of (a) aerosol dilution, and (b) nicotine levels measured in the media following exposure.

Figure 3. Activation of the H2O2-ARE-Luc2RlTA following exposure to 3RF4 and THP1.0. Data shown are mean fold changes in response normalized to the vehicle control (100% DMSO). Activation following a 6h exposure to 3RF4 and THP1.0 (b) 24h exposure to 3RF4 and THP1.0 (c) 48h exposure to THP1.0.

Figure 4. Wound healing rates in HUVEC monolayers during 24 hour treatment with AqE from 3RF4 and THP1.0. Data are mean ± S.D. (n=6).