Individual exposure levels in subjects switching to a Tobacco Heating Product for 5 days

James K. Ebajemito
Clinical Research Scientist

Michael McEwan, Nathan Gale, Alison Eldridge, Oscar M. Camacho, John McAughey, James Murphy, Chuan Liu, George Hardie, and Christopher J. Proctor

British American Tobacco, Scientific R&D Southampton, UK

ENDS UK | London, United Kingdom | 6th June 2019
Disclosures

I declare that this work was fully funded by British American Tobacco (BAT) and I am a full-time employee of British American Tobacco (Investments) Ltd. BAT develops, manufactures and sells tobacco and nicotine products around the world.
Agenda

▪ Investigational product/Risk Assessment Framework
▪ Study Objectives
▪ Study Design
▪ Biomarkers of Exposure (BoE)
▪ Results
▪ Summary
glo THP

- Tobacco Neostik, single use and disposable
- Heats to ~240°C sufficient to release nicotine & flavours without combustion
- Battery-operated and recharged by micro USB

Emissions show much-reduced toxicant levels compared to cigarettes*

TOXICANTS OF INTEREST glo vs cigarette

<table>
<thead>
<tr>
<th>Toxicants</th>
<th>glo</th>
<th>Cigarette</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO (9 PRIORITY TOXICANTS)</td>
<td>3%</td>
<td>100%</td>
</tr>
<tr>
<td>FDA (18 PRIORITY TOXICANTS)</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>HEALTH CANADA (MAIN 44 TOXICANTS)</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>FDA (93 HARMFUL AND POTENTIALLY HARMFUL CONSTITUENTS)</td>
<td>4%</td>
<td></td>
</tr>
</tbody>
</table>

*These qualities do not necessarily mean this product produces less adverse health effects than tobacco products

Our Framework to Establish Reduced Risk Potential

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Type of Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population risk reduction</td>
<td>Post-market surveillance</td>
</tr>
<tr>
<td></td>
<td>Consumer perception study</td>
</tr>
<tr>
<td>Individual risk reduction</td>
<td>Systems science</td>
</tr>
<tr>
<td></td>
<td>Biomarker of effect study</td>
</tr>
<tr>
<td>Toxicant exposure reduction</td>
<td>In vitro models of disease</td>
</tr>
<tr>
<td></td>
<td>Exposure & pharmacokinetic studies</td>
</tr>
<tr>
<td></td>
<td>Computational toxicology</td>
</tr>
<tr>
<td>Stewardship science</td>
<td>In vitro regulatory toxicology</td>
</tr>
<tr>
<td></td>
<td>Chemical & physical characterisation</td>
</tr>
<tr>
<td></td>
<td>Product design stability</td>
</tr>
</tbody>
</table>

Study Title

A Randomised Controlled Single-Centre Open-Label Study in Healthy Subjects to Evaluate the Effect on Biomarkers of Exposure (BoE) of Switching from a Combustible Cigarette to a Potentially Reduced Risk Product

Study Objectives

To quantitatively assess within-arm changes in Biomarkers of Exposure (BoE) and Biomarkers of Biological Effect (BoBE) when smokers switch to glo THP or cessation
Ethical & Regulatory Considerations

ORECNI
Office for Research Ethics Committees Northern Ireland
(ORECNI; ref.: 17/NI/0065)

ISRCTN registry
Registry number: ISRCTN80651909

Study Location: Belfast, United Kingdom
Study Population

Age & Gender
Healthy male or female smokers, aged 21 – 55 years
- Smoking status verified by urinary cotinine and eCO at Screening and Admission
- Healthy status verified by vital signs, clinical laboratory evaluations, physical examination, ECG and lung function tests

Smoking History
Typically smoke 10 – 30 FMCs per day, within 6 – 8 mg ISO tar bands
- Min. 6 month use of current brand and 3 years smoking history, prior to Screening

Main Exclusion Criteria
Planning to quit smoking in next 12 months
- Regular use of nicotine or tobacco products other than FMCs
- Non-inhalers (self-reported or observed at Admission)
Biomarkers of Exposure (BoE)

Exhaled breath
- Carbon monoxide (eCO)

Urine
- Urinary biomarkers

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Smoke Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Nicotine equivalents</td>
<td>Nicotine</td>
</tr>
<tr>
<td>Total NNAL</td>
<td>NNK</td>
</tr>
<tr>
<td>Total NNN</td>
<td>NNN</td>
</tr>
<tr>
<td>3-HPMA</td>
<td>Acrolein</td>
</tr>
<tr>
<td>HMPMA</td>
<td>Crotonaldehyde</td>
</tr>
<tr>
<td>S-PMA</td>
<td>Benzene</td>
</tr>
<tr>
<td>MHBMA</td>
<td>1,3-Butadiene</td>
</tr>
<tr>
<td>CEMA</td>
<td>Acrylonitrile</td>
</tr>
<tr>
<td>HEMA</td>
<td>Ethylene oxide</td>
</tr>
<tr>
<td>AAMA</td>
<td>Acrylamide</td>
</tr>
<tr>
<td>GAMA</td>
<td>Acrylamide</td>
</tr>
<tr>
<td>4-ABP</td>
<td>4-Aminobiphenyl</td>
</tr>
<tr>
<td>o-Tol</td>
<td>o-Toluidine</td>
</tr>
<tr>
<td>2-AN</td>
<td>2-Aminonaphthalene</td>
</tr>
<tr>
<td>1-OHP</td>
<td>Pyrene</td>
</tr>
</tbody>
</table>

Nicotine + 5 metabolites

Tobacco Specific Nitrosamines (TSNAs)

Mercapturic Acids

Aromatic Amines

Polycyclic Aromatic Hydrocarbons (PAH)
Study Design

- A single-centre, randomised, open label, 5-arm, 5-day *ad libitum* Exposure study during 8-day confinement

- Nicotine PK at end of confined switching period, during defined single-use session

- 30 subjects in each of the study groups = 150 subjects
Study Design

- *Ad libitum* use of all products in study (max. 120% of self-reported CPD) excluding cessation group from days 3 to 7

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-hour urine sample</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Exhaled CO (eCO)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Blood sample</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotine Pharmacokinetics (PK)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Results

Significant reductions in eCO and SPMA following switch*

*eCO

SPMA

Mean eCO (ppm)

Mean SPMA (ng/24-hrs)

Baseline Day 2 to 3 Day 3 to 4 Day 4 to 5 Day 5 to 6 Day 5 to 7

Baseline Day 2 to 3 Day 4 to 5 Day 6 to 7

Lucky Strike glo Nicotine Cessation

*These qualities do not necessarily mean this product produces less adverse health effects than tobacco products
Results

- Significant reductions in NNAL following switch
- Total Nicotine remained high, but flat following switch to glo THP*

![Graph showing NNAL and Tneq levels over time for Lucky Strike, glo, and Nicotine Cessation.]

*These qualities do not necessarily mean this product produces less adverse health effects than tobacco products
Results

Generally, levels of BoE significantly reduced following switch*

Mean excretion on Day 6 to 7 vs excretion at Baseline

*These qualities do not necessarily mean this product produces less adverse health effects than tobacco products

O-Tol sensitivity analysis with one subject value removed from cessation group. With this value included cessation shows an increase of 274.7%

FF GAMA showed significant reductions in the glo group when Holm’s adjustment for multiplicity was applied
Summary

- Data shows significant reduction in all BoEs (with o-Tol sensitivity test) and in a number of cases these are similar reductions to nicotine cessation

- These data may suggest the potential of glo THP as a potential reduced-risk product

- Further clinical studies would be necessary to:
 - demonstrate that these reductions continue or are sustained
 - quantify any translation to reductions in smoking-related health risks i.e. Biomarkers of Potential Harm (BoPH)
Acknowledgement

- Donald W. Graph
- Kirk Newland
- Mike McEwan
- Nathan Gale
- Alison Eldridge
- George Hardie
- Oscar M. Camacho
- John McAughey
- Chuan Liu
- James Murphy
- Chris Proctor
- Max Scherer
THANK YOU

bat-science.com

@BAT_Sci