Population Modelling Assessing the Health Effects of Launching Tobacco Heated Products in Japan

Oscar M. Camacho1, Andrew Hill2, Jason Adamson1, Yoga Keralapura1, Krishna Prasad1, James Murphy1 and Christopher Proctor1

1British American Tobacco, Research and Development, Regents Park Road, Southampton, SO15 8TL, United Kingdom
2Ventana Systems UK, Salisbury, United Kingdom

Poster Session 1, #143 at SRNT Annual Meeting, 21st February 2019, San Francisco, USA

Introduction

In less than 2 decades, the nicotine use landscape has changed substantially. In 2001, the Institute of Medicine (IOM) introduced the concept of Tobacco Harm Reduction. They suggested a strategy for harm reduction based on the replacement of risky tobacco products like cigarettes with lower risk products, stating that products with potential for harm reduction should reduce users’ exposure to one or more toxins in smoke; and reductions in exposure to toxics should have a disease relevant impact (IOM, 2001)[1]. Soon after, technological advances would enable the development of devices providing nicotine and other composable products, while reducing the exposure to harmful constituents found in cigarette smoke. Within the Tobacco Harm Reduction paradigm, these new products could have a lower risk profile than conventional cigarettes and be identified as Potentially Reduced Risk Products (PRRP). In the aerosol delivery space, products belonging to two main categories, e-cigarettes and Tobacco Heated Products (THP) are being investigated as PRRPs.

Following FDA lead with their Modified Tobacco Product Application (MRTPA), several governments around the World are considering scientific evidence which could help substantiate the potential of PRRPs. Products’ risk could be considered a composite of the intrinsic risk of the product (individual) and by which products are used i.e., the behavioural aspect (population risk). In 2012, the FDA’s MRPTA guidance suggested using mathematical models as tools for assessing the impact of PRRPs in terms of population health outcomes. These models provide simplified representations of the behaviours and mechanisms associated with nicotine use which combined with risk estimates can provide informative projections for different health outcomes over time. British American Tobacco (BAT) in collaboration with Ventana Systems UK has developed a System Dynamics conceptual model for two nicotine product categories [2]. This initial model built and calibrated using data from the United Kingdom has now being adapted to provide projections for mortality and morbidity endpoints as result of launching Tobacco Heated Products in Japan.

Aim

This work has two aims: 1. To assess the appropriateness of real life data collected through surveys as model inputs. 2. To provide projections of the impact of launch of health outcomes (mortality and morbidity) as result of launching Tobacco Heated Products in the Japanese market.

Methods

The model is comprised of two distinct parts: A structural part representing the basic mechanisms or relationships between the all possible nicotine statuses for a two product model as well as the inflows (birth rates, migration) and outflows (mortality, morbidity). The second element are the data inputs which allows to provide projections, a model implementation, by using estimates observed for that population and the product being investigated.

Model Structure

The model structure has been previously defined. Briefly, in the model, different smoking statuses are represented by stocks (compartments) and arrows represent the flows (Figure 1). It allows representation of complex non-linear mechanisms, including feedback effects, by simply calculating inflows and outflows based on Systems Dynamics methodology.

The model is initiated in the past, with data from a specific year. It is not a cohort model. The idea is to take the whole of the population. All potential transitions for a nicotine product model are also considered differentiating between current/former and dual PRRP users and, with and without smoking history. The reason for separating stocks with different smoking history is not only because these categories are likely to have different relative risks but it is also necessary to investigate initiation from never and former smokers. Full description of the model and structural/conceptual assumptions can be found in Hill & Camacho, 2017[2].

Data inputs

Public use data was identified to initialise the model at year 2004. This included Japanese specific demographic data and smoking prevalence by age and gender, with birth and death rates for these same categories. Additional data was collected which was used as a baseline for a period of 13 years up to 2016, with a time step of a year. Mortality relative risks between smokers and never smokers were extracted from a report by the Epoch-Japan Research Group. Data sources are listed in Table 2.

Transition estimates between THP use and other stocks were not publicly available. A population study to estimate transition rates between different products, among other endpoints, was carried out in Japan. The study is on-going and will provide data about different product prevalences, risk perception, quality of life (QLQ) measures and model transitions estimates between combustible products and THP for a period of years (2018 to 2020). The study is planned to collect data in 6 waves, two cross-sectional waves per year, with the initial wave considered to be a pilot wave used to test the methodology. Learnings from the pilot have been used to refine the self-reported instrument. The results presented here are based on questions about current and past use from 4,154 participants during the pilot study. This first wave only surveyed three areas in Japan: Sondai city, Tokyo metropolitan area and Osaka-fu. Next waves will be implemented nationwide.

Table 1. Data sources for smoking related data inputs in Japanese population.

<table>
<thead>
<tr>
<th>Data inputs</th>
<th>Study/Report/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialisation data</td>
<td>Demographic data</td>
</tr>
<tr>
<td>Population and birth Projection</td>
<td>Population Census by Statistics Bureau, Ministry of Internal Affairs and Communications (MHLW, Japan)</td>
</tr>
<tr>
<td>Sex</td>
<td>National Institute of Population and Social Research (NIPSSR, Japan)</td>
</tr>
<tr>
<td>Smoking Initiation</td>
<td>National Health and Nutrition Survey (MHLW, Japan)</td>
</tr>
<tr>
<td>Calibration data</td>
<td>National Health and Nutrition Survey (annual), Ministry of Health, Labour and Welfare (MHLW, Japan)</td>
</tr>
<tr>
<td>Mortality Rates</td>
<td>Life Table by Ministry of Health, Labour and Welfare (MHLW, Japan)</td>
</tr>
</tbody>
</table>

Results

During our survey in Japan, 34,197 households were visited with 4,154 participants self-completing their paper questionnaires adding to the overall response of 12%. The sample was able to successfully capture the age and gender distribution. The biggest discrepancy was for the 30-39 years old where weighted sample points to 15.9% of the population within this age category while the sample was 12.1% of respondents.

The weighted and unweighted number of participants by age and gender are displayed in Figure 2.

Our survey estimated an overall smoking prevalence of 15.5% for these 3 regions in Japan, underestimating overall Japan prevalence which is estimated to be around 18%, THP use, including dual use, was estimated to be at 5.3% which is 5.5% lower than the 2016 estimate from the Japanese government. Smoking prevalence significantly across all categories but not proportionally (Table 2). Table 2. Number of respondents weighted and unweighted by age and gender.

Parameter | CIC (%) | THP (%) | Other nicotine products (%) | Unweighted | Weighted |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>478.4</td>
<td>156.5</td>
<td>28.0</td>
<td>2.5</td>
<td>4.3</td>
</tr>
<tr>
<td>Female</td>
<td>167.0</td>
<td>53.1</td>
<td>21.8</td>
<td>2.6</td>
<td>4.1</td>
</tr>
<tr>
<td>Total</td>
<td>645.4</td>
<td>209.5</td>
<td>50.7</td>
<td>4.9</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Due to these limitations, smoking prevalence from publicly available data was used to inform the model. Smoking initiation rates were calculated from the National Health and Nutrition Survey 2010 by MHLW (Figure 3 left). Smoking cessation rates were estimated through calibration (3 Right).

Figure 2. Number of respondents weighted and unweighted by age and gender.

Figure 3. Estimated smoking initiation rates (left) and quitting rates calculated through calibration (right).

Scenarios

With the data presented to this point we generated a Status Quo scenario, i.e., without considering THP use. Projections from this Status Quo scenario were assessed against Japan projected data to confirm it was able to draw sensible projections (Figure 4).

The alternative scenario, including the introduction of THPs was difficult to populate using estimates from our survey. We found that even though the survey was large enough to produce satisfactory estimates for smoking, the lower prevalence for THP made the sample size insufficient for calculating reliable prevalence rates by age and gender. There was an scattered absence of observations for some age/gender transitions which we believe to be a result of insufficient sampling within those age/gender groups. To mitigate this effect results were collapsed by gender i.e., same rates across all age categories or overall if frequency was also low by gender (Table 3). THP relative risk was assumed to be 0.1 ± 0.05 per UK House of Commons Report.

Table 3. Estimates of transition rates from and to THP calculated from pilot study outputs.

<table>
<thead>
<tr>
<th>Transition Rates</th>
<th>Status Quo</th>
<th>THP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation of THP from never used estimated 0.25%</td>
<td>Initiation of THP from smoking to dual use was estimated 31.7% of males and 15% of females. Initiation of THP from smoking, complete switching was estimated 0.4% of males and 0.6% of females. Dual users were estimated to have 2.0% rate quitting both products. Dual users relapsing rates to smoking was estimated to be 3.6% Dual users rate complexity quitting smoking remaining as THP users was 37.1% for males and 44% for females.</td>
<td>Initiation of THP from smoking was estimated 0.4% of males and 0.6% of females. Dual users were estimated to have 2.0% rate quitting both products. Dual users relapsing rates to smoking was estimated to be 3.6% Dual users rate complexity quitting smoking remaining as THP users was 37.1% for males and 44% for females.</td>
</tr>
</tbody>
</table>

The relapse rate to THP use for both genders was at 18.5% QLQ measures and model transitions estimates between combustible products and THP for a period of years (2018 to 2020). Based on these assumptions and estimates, overall smoking prevalence could go as low as 5% as prevalence of THP use reaches 11.9% in 2060. In terms of population health outcomes, we investigated incidence of lung cancer and mortality, expressed as premature deaths, years of life lost (Figure 5). In numbers, by introducing THP products in the Japanese market there could be up to 400 thousand fewer cases of lung cancer by 2060 and 4.3 million life-years saved when compared to the scenario where THP were not available in Japan.

Figure 4. Japanese population projection Status Quo scenario up to 2060 vs. Census office projection (Left) and population distribution by age and gender for Japan (Right).

Figure 5. Premature deaths of under 85 (Left, in thousands) and life-years lost (Right, in millions).

Limitations

There some clear limitations to the work presented here as it is largely based on a pilot survey which suggested to be of insufficient size to produce all estimates required in the model. Next waves will be collecting responses from over 10,000 respondents per year which is expected to enable calibration of those estimates by gender and age.

Conclusions

The data collected from the instrument has been shown to be appropriate to inform our population model although larger samples will be required to capture all THP transitions. Assessment of the data suggests that the model is likely to be valid and accurate and that our assumptions about THPs risk with respect to smoking, suggests that launching THPs will lead to a clear benefit in terms of population health by 2060.

Correspondence: Oscar M. Camacho@bat.com

Figure 6. Representation of the THP model. This includes all possible outcomes that can occur at a time step.