Determination of hydrazine in smokeless tobacco products by GC-MS

Pete Davis, Harriet Kimpton, Christopher Wright & Kevin McAdam

BAT Group Research and Development with GC Laboratories UK

ST18 - CORESTA Conference, Graz, October 2011
Overview
Determination of hydrazine in smokeless tobacco products

- Why quantify hydrazine in tobacco products?
- Method summary
- Linearity
- Recovery
- LOQ and LOD
Why?

Determination of hydrazine in smokeless tobacco products

- First identified in tobacco and cigarette smoke by Hoffmann et al\(^1\)

- Identified in Smoking and Tobacco Control Monograph 2 as a carcinogenic agent in smokeless tobacco products\(^2\)

- IARC Monograph 89
 - Concluded that smokeless tobacco is a Group 1 (known human) carcinogen

- IARC Monograph 71 categorised hydrazine as a Group 2B possible human carcinogen

- No published data on hydrazine in contemporary smokeless tobacco products

- The development of a method for hydrazine analysis in smokeless tobacco products was conducted as part of a project characterising levels of toxicants in contemporary smokeless tobacco products

\(^1\) Liu, Schmeltz & Hoffmann, Anal. Chem., 1974, 46 (7), pp 885-889

\(^2\) Brunneman and Hoffmann, Smoking and Tobacco Control Monograph No.2 Chapter 3, pg 96
External References

Determination of hydrazine in smokeless tobacco products

- Validation of an existing method for contemporary smokeless tobacco matrices in partnership with GC Labs UK
- SANCO/3030/99 rev.4 ‘Guidance for generating and reporting methods of analysis…’ (GLP approach) selected by GC Labs

- Specificity
 - Impurities should contribute < 3% to total target peak

- Linearity
 - Extend over nominal range (±20%) in normal matrices

- Accuracy
 - Can use assessment of interference and precision

- Precision
 - Must report mean, %RSD and number of determinations
The stages of validation
Determination of hydrazine in smokeless tobacco products

- Establish the linear dynamic range of response
- Determine efficiency of derivatisation
- Analysis of ‘control’ tobacco products
- Assess accuracy, precision and LOQ
- Demonstrate confirmation of chemical identity
Method Overview

Determination of hydrazine in smokeless tobacco products

- Tobacco extracted using 80/20 MeOH/0.1N HCl
 - 2g in 50mL

- Extract reacted with pentafluorobenzaldehyde
 - Hydrazine reacts to form pentafluorobenzaldehyde azine

- Partitioned into hexane

- Analysed by GC-MS
 - External standard method
Equipment

Determination of hydrazine in smokeless tobacco products

- Varian 3800/Saturn 4D GC/MS
- Ion trap detector
- **Settings**
 - 30m x 0.25mm x 0.25µm Zebron ZB-5 column
 - 2µL splitless injection at 200°C
 - Oven Ramp: 70°C to 250°C at 15°C/min and hold for 3 min
 - He flow rate of 1.0mL/min
 - Acquisition Range of 40 – 550m/z
 - Quantitative ions 369m/z and 388m/z
The stages of validation
Determination of hydrazine in smokeless tobacco products

- Establish the linear dynamic range of response
- Determine efficiency of derivatisation
- Analysis of ‘control’ tobacco products
- Assess accuracy, precision and LOQ
- Demonstrate confirmation of chemical identity
Linearity: Standard Calibration Curve in Blank solvent

Determination of hydrazine in smokeless tobacco products

\[y = 1028045.6374x - 1886.8800 \]
\[R^2 = 0.9996 \]
Linearity: Standard chromatogram
Determination of hydrazine in smokeless tobacco products
The stages of validation

Determination of hydrazine in smokeless tobacco products

- Establish the linear dynamic range of response
- Determine efficiency of derivatisation
- Analysis of ‘control’ tobacco products
- Assess accuracy, precision and LOQ
- Demonstrate confirmation of chemical identity
Hydrazine is derivatised with pentafluorobenzaldehyde to form the azine of pentafluorobenzaldehyde.

- Hydrazine derivatised exactly according to the method
 - In blank solvent

- 104% recovery
 - Mean of 2 experiments

- Data confirm efficiency of partition into hexane
The stages of validation
Determination of hydrazine in smokeless tobacco products

- Establish the linear dynamic range of response
- Determine efficiency of derivatisation
- Analysis of ‘control’ tobacco products
- Assess accuracy, precision and LOQ
- Demonstrate confirmation of chemical identity
Accuracy and Precision
Determination of hydrazine in smokeless tobacco products

- Analysis of five ‘control’ tobacco products
 - Dry snuff, loose snus, plug, chewing tobacco and tablet

- Tobacco samples spiked with hydrazine at three different levels
 - Approximately 0.5µg/g, 0.05µg/g and 0.025µg/g

- Results of recovery experiments define accuracy and precision
- Lowest acceptable recovery defines LOQ
Accuracy and Precision; Recovery Data

Determination of hydrazine in smokeless tobacco products

<table>
<thead>
<tr>
<th>Tobacco Product</th>
<th>Spike Level (µg/g hydrazine)</th>
<th>Mean Recovery (%)</th>
<th>RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Snuff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5300</td>
<td>87.5</td>
<td>5.12</td>
<td></td>
</tr>
<tr>
<td>0.0530</td>
<td>105.2</td>
<td>4.66</td>
<td></td>
</tr>
<tr>
<td>0.0265</td>
<td>96.7</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>Loose Snus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5300</td>
<td>75.7</td>
<td>8.34</td>
<td></td>
</tr>
<tr>
<td>0.0530</td>
<td>96.1</td>
<td>6.87</td>
<td></td>
</tr>
<tr>
<td>0.0265</td>
<td>83.1</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>Plug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5300</td>
<td>85.2</td>
<td>4.07</td>
<td></td>
</tr>
<tr>
<td>0.0530</td>
<td>95.3</td>
<td>8.47</td>
<td></td>
</tr>
<tr>
<td>0.0265</td>
<td>92.2</td>
<td>6.20</td>
<td></td>
</tr>
<tr>
<td>Chewing Tobacco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5300</td>
<td>90.5</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>0.0530</td>
<td>98.3</td>
<td>3.22</td>
<td></td>
</tr>
<tr>
<td>0.0265</td>
<td>99.7</td>
<td>9.11</td>
<td></td>
</tr>
<tr>
<td>Tablet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5300</td>
<td>77.0</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>0.0530</td>
<td>74.1</td>
<td>6.86</td>
<td></td>
</tr>
<tr>
<td>0.0265</td>
<td>64.0</td>
<td>11.3</td>
<td></td>
</tr>
</tbody>
</table>
Accuracy and Precision
Determination of hydrazine in smokeless tobacco products

- **Acceptance criteria:**
 - Accuracy: recovery data between 70% and 110%
 - Precision: RSD < 20%

- **Accuracy:**
 - All tobacco types pass criteria at 0.025μg/g with the exception of tablet tobacco
 - All tobacco types pass criteria at 0.05μg/g

- **Precision:**
 - All tobacco types display good precision at all spiked levels

- **LOQ:**
 - 0.05μg/g for tablet tobacco products
 - 0.025μg/g for dry snuff, loose snus, plug and chewing tobacco
The stages of validation

Determination of hydrazine in smokeless tobacco products

- Establish the linear dynamic range of response
- Determine efficiency of derivatisation
- Analysis of ‘control’ tobacco products
- Assess accuracy, precision and LOQ
- Demonstrate confirmation of chemical identity
Identification

Determination of hydrazine in smokeless tobacco products

Mass Spec of Standard Solution

Mass Spec of Recovery Solution
Summary of method and performance

Determination of hydrazine in smokeless tobacco products

- The validated method is suitable for the determination of hydrazine in 5 different contemporary smokeless tobacco product types

- The data demonstrate fulfilment of SANCO/3030/99 rev. 4

- Linear range of 0.8ng/mL – 170ng/mL hydrazine
 - Equivalent to 1.6ng/g – 340ng/g

- Recovery experiments show accuracy and precision fall within defined acceptance criteria

- LOQ at 25ng/g except for tablet products at 50ng/g
www.bat-science.com

we welcome your comments