

Utility of biomarkers of potential harm as end-points for the disease relevant assessment of novel tobacco and nicotine products as potentially reduced risk products

Dr Christopher Proctor

Biomarkers of potential harm: A public workshopFDA/CTP Scientific Workshop, Washington | 4-5th April 2016

Conflict of interest statement

I declare that this work was fully funded by British American Tobacco and that myself and my co-workers were full time employees of British American Tobacco for the duration of the research.

Agenda

- Background
- Utility of biomarkers of potential harm (BoPH) with Reduced Toxicant Prototype cigarettes
- BoPH development process using the Adverse Outcome Pathway approach
- BoPH development case studies
- Summary

Background: key milestones in potentially reduced risk tobacco product*

^{*}Approaches are consistent in their proposed use of biomarkers of exposure, effective dose and potential harm.

Biomarker definitions*

Biomarker of Exposure

 A tobacco constituent or metabolite that is measured in a biological fluid or tissue that has the potential to interact with a biological macromolecule; sometimes considered a measure of internal dose

Biologically Effective Dose (BED)

 The amount that a tobacco constituent or metabolite binds to or alters a macromolecule: estimates of the BED might be performed in surrogate tissues

Biomarker of potential harm

 A measurement of an effect due to exposure; these include early biological effects, alterations in morphology, structure, or function and clinical symptoms consistent with harm; also includes "pre-clinical changes"

^{*}Clearing the Smoke: Assessing the Science base for Tobacco Harm Reduction (2001)

Background: rationale for BoPH selection for Reduced Toxicant Prototype cigarette studies

Biomarker	Disease end point	Observations in cessation studies	Observations in smokers versus non-smokers
high density lipoprotein cholesterol (HDL-C) in serum	Cardiovascular disease ¹	Levels can be reversed after 30 days cessation ⁷	Relatively consistent differences observed between smokers and non-smokers
white blood cell total count (WBC) in blood	Inflammation ²	Rapid and sustained decrease with cessation ⁸	
soluble intercellular adhesion molecule-1 (sICAM-1) in serum	Endothelial dysfuncion ³	Levels decline rapidly within 30 days of cessation ⁹	
11-dehydrothromboxane B2 (11-DTX-B2) in urine	Platelet activtation ⁴	Significant reduction after 3 days cessation 10	
8-epi-prostaglandin F2 α (8-epi-PGF2 α – Type III) in urine	Oxidative Stress ⁵	Significant reduction with 7 days cessation ¹¹	
MCP-1	Atherosclerosis ⁶	Association of MCP-1 with cigarette smoking 12	
1. Chelland Campbell et al. Atherosderosis 2008, 201:225–35 2. Bonaterra et al. Curr. Mol. Med.2010, 10;180–205 3 Gross et al. Clin. Chem. 2012, 58:411–20 4. Frost-Pineda et al. Nic. Tob. Res. 2011, 13:182–93 5. Milne et al. Biomarkers, 2005, 10 (Suppl): S10–23, Rahman, Cell Biochem Biophys. 2005, 43:167–88 6. Deo et al. J. Am. Coll. Cardiol. 2004, 44:1812–88		7. Maeda <i>et al. Prev. Med.</i> 2003, 37 :283-90; Moffat, Atherosclerosis 1988, 75 :85–9 8. Jensen <i>et al. Thorax.</i> 1998, 53 :784-9; Abel <i>et al. Mayo Clin Proc.</i> 2005, 80 :1022-8 9. Palmer <i>et al. Eur J Clin Invest.</i> 2002, 32 :852–7 10. Rångemark <i>et al. Arterioscler Thromb.</i> 1993, 13: 777–82; Saareks <i>et al. Naunyn Schmiedebergs Arch Pharmacol,</i> 2001, 363 :556–61 11. Pilz <i>et al. Thrombosis Research</i> 2000, 99 :209–21 Oguogho <i>et al. Vasa</i> 2000, 29 :103-5 12. Daloee <i>et al. Am J Mens Health.</i> 2015, pii: 1557988315601724. [Epub ahead of print]	

Background: Reduced Toxicant Prototype cigarette results

- 2. Dittrich et al., Approaches for the design of reduced toxicant emission cigarettes, SpringerPlus, 3(2014), p. 374

Background: Reduced Toxicant Prototype cigarette results

Background: BoPH results from RTP cigarette studies

Biomarker	Disease end point	Observations from RTP study
High density lipoprotein cholesterol (HDL-C) in serum	Cardiovascular Disease ¹	No significant difference between RTP and Control group: • Levels varied in Control Smoker and Ex-Smokers groups.
White blood cell total count (WBC) in blood	Inflammation ²	 No significant difference between RTP and Control group: Levels stable throughout study for each group
Soluble intercellular adhesion molecule-1 (sICAM-1) in serum	Endothelial dysfuncion ³	 RTP group significantly higher than control smoking group by EOS: Levels increased in smoking groups and RTP levels were significantly higher than control by EOS
11-dehydrothromboxane B2 (11-DTX-B2) in urine	Platelet activation ⁴	RTP smoking group significantly lower than control group by EOSRTP group lower than ex-smokers by EOS
8-epi-prostaglandin F2α (8-epi-PGF2α – Type III) in urine	Oxidative Stress ⁵	 No significant difference between RTP and Control group: Increased levels at mid point in study reduced to baseline levels by EOS
MCP-1	Atherosclerosis ⁶	 RTP group significantly higher than control group by EOS: Control group reduced to similar levels as NS by EOS while RTP group increased

^{1.} Chelland Campbell et al. Atherosclerosis. 2008, 201:225-35

^{2.} Bonaterra et al. Curr. Mol. Med. 2010, 10;180-205

³ Gross et al. Clin. Chem. 2012, **58**:411-20

^{4.} Frost-Pineda et al. Nic. Tob. Res. 2011, 13:182-93

^{5.} Milne et al. Biomarkers, 2005, 10 (Suppl): S10-23: Rahman, Cell Biochem Biophys. 2005, 43:167-88

^{6.} Deo et al. J. Am. Coll. Cardiol. 2004, 44:1812-88

BoPH development process using the Adverse Outcome pathway approach*

^{*}Adapted from Ankley et al. Environ Toxicol Chem, 2010;29(3): 730-741 and Edwards et al. J Pharmacol Exp Ther. 2016; 356(1):170–81

BoPH development process using the Adverse Outcome pathway approach*

^{*}Adapted from Ankley et al. Environ Toxicol Chem, 2010;29(3): 730-741 and Edwards et al. J Pharmacol Exp Ther. 2016; 356(1):170–81

Transcriptomics & metabolomics	Transcriptomics & metabolomics	
Proteomics	Proteomics	
Candidate targets differentiated by exposure and non-exposure to cigarette smoke	Refine candidate targets by confirming differentiation in samples from smokers and non-smokers	 Establish Adverse Outcome (AO) Filter candidates targets by association with AO Filtered targets become potential key events Identify and qualify upstream/downstream key events Qualify key event relationships

Case study 1a | RNA-seq transcriptomics & metabolomics: in vitro

- 1. Banerjee *et al.* Differential Gene Expression Using RNA-seq Profiling in a Reconstituted Airway Epithelium, Mucilair™, Exposed to Conventional or Electronic Cigarettes Aerosols. SOT 2016. Abstract 3037, P179
- 2. Krämer et al. Bioinformatics. 2014, 30: 523-530

Case study 1b | RNA-seq transcriptomics & metabolomics: clinical

- Garcia-Perez et al. Bioanalysis 2014, 6: 2733-2749
- Kaluarachchi et al. A Multiplatform Metabolic Phenotyping Approach Integrated with Pathway Mapping to Identify Biochemical Differences Between Healthy Smokers and Nonsmokers. SOT 2016, Abstract 1107 P136,
- Shepperd et al. BMC Public Health 2013, 13:690

Case study 2a | In vitro proteomics

- 1. Haswell et al. The effect of cigarette smoke exposure on the proteomic composition of human bronchial epithelial cell air surface liquid.
- Society of Toxicology meeting 2014 (Abstract # 1530)

Case study 2a | *In vitro* proteomics smoke exposure

[•]Haswell *et al*. The effect of cigarette smoke exposure on the proteomic composition of human bronchial epithelial cell air surface liquid. Society of Toxicology meeting 2014 (Abstract # 1530)

[•]Haswell *et al.* A targeted proteomic comparison of human induced sputum from smokers and non-smokers. Society of Toxicology meeting 2016 (Abstract # 3041)

Case study 2b | Proteomics: clinical protein identification

[•]Haswell *et al.* A targeted proteomic comparison of human induced sputum from smokers and non-smokers. Society of Toxicology meeting 2016 (Abstract # 3041)

[•]Camacho et al. A targeted proteomic comparison of human-induced sputum from smokers and non-smokers. Submitted for publication.

Case study 2b | Proteomics: quantification

[•]Haswell *et al.* A targeted proteomic comparison of human induced sputum from smokers and non-smokers. Society of Toxicology meeting 2016 (Abstract # 3041)

[•]Camacho et al. A targeted proteomic comparison of human-induced sputum from smokers and non-smokers. Submitted for publication.

Example candidate AOP for Arterial Stiffness (CVD)

- •AOP for arterial stiffness submitted to OECD Nov '15. EXTENDED ADVISORY GROUP ON MOLECULAR SCREENING AND TOXICOGENOMICS meeting minutes: https://community.oecd.org/community/mst
- •Chen CA et al. Nature. 2010; 23;468(7327):1115-8.
- Laurent S et al. Ann Med. 2012;44 Suppl 1:S93-7.
- Abdelghany et al. Society of Toxicology meeting 2015 (Abstract # 1818)
- •El-Mahdy et al. Cigarette Smoke Constituents Cause Endothelial Dysfunction Due To Oxidative Depletion of Tetrahydrobiopterin and Activation of the Ubiquitin Proteasome System. (Submitted for publication)

Bridging approach

- Large datasets from multiple non-clinical, clinical and population studies required to substantiate modified risk products
- BoPH is a key foundational dataset to establish the risk profile of a product
- Innovation will proceed at a rapid pace therefore need to bridge between product variants
- One approach to bridging could be the use of subsets of data from the original variant (V1) for assessing subsequent variant (V2)

Bridging approach

Summary

- Scientists and regulatory bodies propose that Biomarkers have a key role in the substantiation of modified risk products
- From our RTP cigarette studies we have identified a shortlist of candidate BoPHs
- New -omic approaches show promise for identification of additional BoPHs
- AOPs present an opportunity to assess disease-relevant risk factors through the integration of *in vitro* and BoPH endpoints

Acknowledgements

British American Tobacco

M McEwan, F Lowe, E Minet, J Shepperd, N Newland, A Eldridge, G Errington, M Gaça, D Breheny, O Camacho, L Haswell

Celerion

D Graff, K Newland, I Mayer

ABF

G Scherer

Ohio Smoking Research

J Zweier, M El-Mahady, R Ismail, T Abdelghany

Metabometrix

J. Lindon. I. Garcia-Perez, M. Kaluarachchi, C. Boulage

Caprion

L Cortes, P Croteau, L McIntosh, D Chelsky

Selventa

J Park, M Maria

RJ Reynolds

W Fields

Philip Morris International

J Hoeng, K Luettich, M Talikka, J Szostak

References

Abdelghany et al. Society of Toxicology meeting 2015, Abstract # 1818.

Abel et al. Mayo Clin Proc. 2005, 80:1022-8

Ankley et al. Environ Toxicol Chem. 2010, 29(3):730-41.

Banerjee et al. Differential Gene Expression Using RNA-seq Profiling in a Reconstituted Airway Epithelium, Mucilair™, Exposed to Conventional or Electronic Cigarettes Aerosols. Society of

Toxicology 2016, Abstract #3037

Bonaterra et al. Curr. Mol. Med. 2010, 10;180-205

Camacho et al. A targeted proteomic comparison of human-induced sputum from smokers and non-smokers. Submitted for publication.

Chelland Campbell et al. Atherosderosis. 2008, 201:225-35

Chen CA et al. Nature. 2010, 23;468(7327):1115-8.

Daloee et al. Am J Mens Health. 2015, pii: 1557988315601724. [Epub ahead of print]

Deo et al. J. Am. Coll. Cardiol. 2004, 44:1812-88

Edwards et al. J Pharmacol Exp Ther. 2016, 356(1):170-81.

El-Mahdy et al. Cigarette Smoke Constituents Cause Endothelial Dysfunction Due To Oxidative Depletion of Tetrahydrobiopterin and Activation of the Ubiquitin Proteasome System (Submitted for publication)

Frost-Pineda et al. Nic. Tob. Res. 2011, 13:182-93

Garcia-Perez et al. Bioanalysis. 2014, 6(20):2733-49.

Gross et al. Clin. Chem. 2012, 58:411-20

Haswell et al. The effect of cigarette smoke exposure on the proteomic composition of human bronchial epithelial cell air surface liquid. Society of Toxicology 2014, Abstract # 1530.

Haswell et al. A targeted proteomic comparison of human induced sputum from smokers and non-smokers. Society of Toxicology 2016, Abstract # 3041.

Jensen et al. Thorax. 1998, 53:784-9

Kaluarachchi et al. A Multiplatform Metabolic Phenotyping Approach Integrated with Pathway Mapping to Identify Biochemical Differences

between Healthy Smokers and Non-smokers. SOT 2016, Abstract #1107

Krämer et al. Bioinformatics. 2014, 30(4):523-30.

Laurent S et al. Ann Med. 2012;44 Suppl 1:S93-7.

Maeda et al. Prev. Med. 2003, 37:283-90

Milne et al. Biomarkers, 2005, 10 (Suppl): S10-23

Moffat, Atherosderosis 1988, 75:85-9

Oguogho et al. Vasa 2000, 29:103-5

Palmer et al. Eur J Clin Invest. 2002, **32**:852-7

Pilz et al. Thrombosis Research 2000, 99:209-21

Rahman, Cell Biochem Biophys. 2005, 43:167-88

Rångemark et al. Arterioscler Thromb. 1993, 13: 777-82;

Saareks et al. Naunyn Schmiedebergs Arch Pharmacol, 2001, 363:556-61

Shepperd CJ et al. Regul. Toxicol. Pharmacol. 2015, 72(2):273-91.

